182. Proofs of Euler's Theorem, Etc.

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Several Proofs of Ihara's Theorem

We give three proofs that the reciprocal of Ihara's zeta function can be expressed as a simple polynomial times a determinant involving the adjacency matrix of the graph. The rst proof, for regular graphs, is based on representing radial symmetric eigenfunctions on regular trees in terms of certain polynomials. The second proof, also for regular graphs, is a consequence of the fact that the res...

متن کامل

Two Proofs of Ihara's Theorem

We give two proofs that, for a nite regular graph, the reciprocal of Ihara's zeta function can be expressed as a simple polynomial times a determinant involving the adjacency matrix of the graph. The rst proof is based on representing radial symmetric eigenfunctions on regular trees in terms of certain polynomials. The second proof is a consequence of the fact that the resolvent of the adjacenc...

متن کامل

Euclidean Proofs of Dirichlet’s Theorem

Euclid’s proof of the infinitude of the primes is a paragon of simplicity: given a finite list of primes, multiply them together and add one. The resulting number, say N , is not divisible by any prime on the list, so any prime factor of N is a new prime. Some special cases of Dirichlet’s theorem admit a simple proof following Euclid’s model, such as the case of 1 mod 4 or 5 mod 6. (We mean by ...

متن کامل

Two Proofs of Cayley’s Theorem

We present two proofs of the celebrated Cayley theorem that the number of spanning trees of a complete graph on n vertices is nn−2. In this expository note we present two proofs of Cayley’s theorem that are not as popular as they deserve to be. To set up the story we revisit first some terminology. By a graph G we mean a pair (V (G), E(G)), where V (G) is a set of points (or vertices) and E(G) ...

متن کامل

Simple Proof of the Prime Number Theorem , etc

The point here is the relatively simple argument that non-vanishing of an L-function on the line Re (s) = 1 implies an asymptotic result parallel to the application of ζ(s) to the Prime Number Theorem. This is based upon [Newman 1980]. In particular, this argument avoids estimates on the zeta function at infinity and also avoids Tauberian arguments. For completeness, we recall the standard clev...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Mathematical Gazette

سال: 1905

ISSN: 0025-5572

DOI: 10.2307/3603880